
CS2109s - Tutorial 4

Eric Han (TG12-TG15)
Feb 21, 2024
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Annoucements

Important admin

1. Midterm exam:
1.1 Date & Time: 5 March 2024 4-6pm (2 hours)
1.2 Venue: MPSH 2A & 2B

2. PS4: try to use our functions where available - eg Q2.5, use mean_squared_error
3. Next tutorial, T5 is Week 8, Thu, 14 Mar, week after the midterms.
4. Consultation on 29 Feb 2024 @ AS6, details TBA

• 12pm Pizza Lunch - My treat, Need RSVP
• 1-6pm Consultation / Study
• Will send out details on telegram, and RSVP.
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Bonus from T3

Figure 1: Alpha-Beta Answer (Credit MIT)
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Question 1

Income Credit History Debt Decision

0 Over 10k Bad Low Reject
1 Over 10k Good High Approve
2 0 - 10k Good Low Approve
3 Over 10k Good Low Approve
4 Over 10k Good Low Approve
5 Over 10k Good Low Approve
6 0 - 10k Good Low Approve
7 Over 10k Bad Low Reject
8 Over 10k Good High Approve
9 0 - 10k Bad High Reject
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Question 1a-c [G]

a. Construct the best decision tree to classify the final outcome (Decision).
b. First row is labelled wrongly Reject > Approve, construct the best decision tree.
c. What is the decision made by the decision tree in part (b) for a person with an

income over 10k, a bad credit history, and low debt?

Recap

• What is a decision tree?
• How are the features selected (best)?
• How to calculate information gain?

IG(Y , X ) = E (Y ) − E (Y |X )

5



Question 1a-c [G]
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Answer 1a

E(Decision) = 0.8812908992306927
IG(Decision,X) = E(Decision) - E(Decision|X)

E(Decision|X) IG(Decision|X)

Income 0.879673 0.00161775
Credit History* 0 0.881291
Debt 0.879673 0.00161775

Credit History
|-- [Bad] Reject:3
+-- [Good] Approve:7
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Answer 1b

Choice 1 - Credit History

E(Decision) = 0.7219280948873623
IG(Decision,X) = E(Decision) - E(Decision|X)

E(Decision|X) IG(Decision|X)

Income 0.68966 0.0322684
Credit History* 0.275489 0.446439
Debt 0.68966 0.0322684
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Choice 2 - Income

E(Decision) = 0.9182958340544894
IG(Decision,X) = E(Decision) - E(Decision|X)

E(Decision|X) IG(Decision|X)

Income* 0.666667 0.251629
Debt* 0.666667 0.251629
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Tree

Credit History
|-- [Bad] Income
| |-- [0 - 10k] Reject:1
| +-- [Over 10k] Debt
| +-- [Low] Approve:1 Reject:1
+-- [Good] Approve:7

Answer 1c

Cannot decide - the decision might either reject or accept the person.
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Question 1d-e [G]

d. Following (c), what are some ways to to mitigate inconsistent data?
e. Derive a Tree with each leaf node representing a minimum of 3 training data points

by pruning the tree you previously obtained in part (b). Which is pruned?

Answer 1d

• Regularize: Pruning to remove unnecessary branches and nodes, ie. Min-sample
and Max-depth.

• Pre-processing: Remove outliers that create noise.
• Feature Selection: Select only relevant features, so less relevant features that could

create inconsistencies are not part of the decision tree.
• Data Scarcity1: Collect more data on new features to clearly differentiate the

inconsistent classes.

1Not always the best
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Answer 1e

The outlier is probably the person with an income over 10k, a bad credit history, and low
debt.

Income Credit History Debt Decision

0 Over 10k Bad Low Approve
7 Over 10k Bad Low Reject
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Question 2


6 4 11 20
8 5 15 30
12 9 25 50
2 1 3 7


a. Apply the Normal Equation formula to obtain a linear regression model that

minimizes MSE of the data points.
b. Normal Equation needs the calculation of (XT X )−1. But sometimes this matrix is

not invertible. When will that happen, and what should we do in that situation?

Recap

• What is the Normal Equation?
• What is the Gradient Descent?
• How does it compare with Gradient Descent? 12



Answer 2a

w = (XT X )−1XT Y

X =


1 6 4 11
1 8 5 15
1 12 9 25
1 2 1 3

 , Y =


20
30
50
7

 → XT X =


4 28 19 54
28 248 174 492
19 174 123 347
54 492 347 980

 ,

(XT X )−1 =


5.5 −5.75 −4 4

−5.75 7.5 6.5 −5.75
−4 6.5 14 −8
4 −5.75 −8 5.5

 , XT Y =


107
974
687
1941



→ (XT X )−1XT Y =


4

−5.5
−7
7

 → ŷ = 4 − 5.5x1 − 7x2 + 7x3
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Answer 2b

• Matrix XT X is not invertible
• Some rows or columns in the dataset matrix are linearly dependent

• Columns are linearly dependent > Highly correlated or redundant features
• Rows are linearly dependent > collinear or duplicates

• Matrix XT X is ill-conditioned (almost singular)
• Some rows or columns in the dataset matrix are almost linearly dependent
• Not enough data points to cover the number of features

In such instances, gradient descent can be used to arrive at weights for the linear
regression model that minimise the cost function.

Intuition: If invertible, there is a single solution, otherwise there are multiple solutions.
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Question 3 [G]

For Linear Regression, there are two popular cost functions, Mean Squared Error:
L(y , ŷ) = 1

2(y − ŷ)2 and Mean Absolute Error: L(y , ŷ) = 1
2 |y − ŷ |

Figure 2: Scatter plot of the actual weight of meat at NTUC (x) and its price (y)

a. Justify your choice of cost function for this problem.
b. Provide examples of cost functions that are better suited to handle outliers?

15



Recap

• What is the difference between / when should we use MSE and MAE?
• How does it relate to L2, L1 loss?

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
y y

0

1

2

3

4

L(
y,

y)

MSE 12 (y y)2

MAE 12 |y y|

Figure 3: Cost Functions Plot

L1/L2 are technically vector lengths but are commonly interchanged with MAE/MSE.
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Answer 3a

Two examples are shown below when the cost functions are MAE and MSE respectively.

Figure 4: MAE Figure 5: MSE

Note: As shown in these examples, outliers can have a greater impact on MSE than
MAE, even if the y-values are between 0 and 1.
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Answer 3b

Huber loss is a combination of MSE and MAE and is defined as:

L(y , ŷ) =


1
2(y − ŷ)2 for |y − ŷ | ≤ δ

δ · |y − ŷ | − 1
2δ2 otherwise

where δ is a transition threshold between the MSE and MAE behaviors.

Log-cosh loss is defined as:

L(y , ŷ) = log(cosh(yi − ŷi))

For small values of x, log(cosh(x)) ≈ 1
2x2, which is similar to MSE. For larger values of

x, log(cosh(x)) ≈ |x | − log(2), which is similar to MAE. Log cosh approximates MSE
and MAE and is similar to the Huber loss function.
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1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
y y
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y,
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Huber = 1
Log-cosh

Figure 6: Cost Functions Plot

Huber loss and Log cosh loss are more robust to outliers compared to MSE and MAE
because they don’t give as much weight to extreme values. This makes them useful in
cases where the presence of outliers might negatively impact model performance if using
MSE or MAE. 19



Question 4 [G]

Given a simple function y = x2, we know the gradient is dy
dx = 2x . As such, the

minimum of this function is 0.

a. Compute over 5 iterations for α ∈ {10, 1, 0.1, 0.01} in tabular format.
b. During the course of training for a large number of epochs/iterations, what can be

done to the value of the learning rate alpha to enable better convergence?

Recap

• What is gradient descent?
• What is the equation to perform the updates?
• Why do we need a learning rate α, and what is its use?
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Answer 4a

Table 6: History of x-values.

t 10.0 1.0 0.1 0.01

0 5 5 5 5
1 -95 -5 4 4.9
2 1805 5 3.2 4.802
3 -34295 -5 2.56 4.70596
4 651605 5 2.048 4.61184
5 -12380495 -5 1.6384 4.5196
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Answer 4b

Learning rate scheduler, α can be decreased through the course of training - larger
values at the start, smaller values near the end:

• Exponential Decay: α(t) = α0e−kt
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Bonus Qn

To help you further your understanding, not compulsory; Work for Snack/EXP!

Tasks

1. Implement create_tree(tree, df, parent=None, action = '') to solve Q1
to get the following trace; IG implemented using pandas.
1.1 Some code implemented in https://github.com/eric-vader/CS2109s-2324s2-bonus

Credit History
|-- [Bad] Income
| |-- [0 - 10k] Reject:1
| +-- [Over 10k] Debt
| +-- [Low] Approve:1 Reject:1
+-- [Good] Approve:7

23

https://github.com/eric-vader/CS2109s-2324s2-bonus


Buddy Attendance Taking

1. [@] and Bonus declaration is to be done here; You should show bonus to Eric.
2. Attempted tutorial should come with proof (sketches, workings etc. . . )
3. Guest students must inform Eric and also register the attendance.

Figure 7: Buddy Attendance: https://forms.gle/jsGfFyfo9PTgWxib6
24
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