
CS2109s - Tutorial 3

Eric Han (TG12-TG15)
Feb 15, 2024

1



Annoucements

Important admin

1. TG15, PS4 - PS8 will be marked by Guo Mingqi due to my high teaching
workload [By Teaching Committee/Rizki].

2



Problem Set 2

1. Q1.2 - A*Star algorithm
1.1 Check if node is visited
1.2 PQ not updated correctly when encountering a path to a child node with a lower cost.

2. Q2.2 - TSP Goal state cannot be known explictly - state explicitly that goal state
cannot be known, if not i do not know if you are trying to define it or not.

3. Q2.6 - Abuse of random.sample to create the inital state, it will give the desired
effect but this is abuse!

4. Q1.3 - Most explanations are sloppy but since its 1 marks as long as you explain in
line of the max rows/cols, I will award you; Learn to explain properly.

3



Task 1.3 - Why heuristic is consistent and admissible [Wenzhong 2324S1/TG4].

Let the shape of the 2D Rubik cube be (R, C). Let x be the number of misplaced piece
in state n, and M = max(R, C).

My heuristic is: h(n) = x
M

Admissibility (but not necessary)

Heuristic is admissible since in the original puzzle, each move will correct at most M
number of pieces, and the heuristic is saying each move is the best move possible
(i.e. correct M number of pieces), hence this heuristic can never be larger than the
actual number of moves. => h(n) ≤ h∗(n)

4



Consistency

Let n be a state in the puzzle, and n′ be the direct successor of n (i.e. the children of n)
Denote G to be the goal state.

1. From my heuristic h(n) = x
M

2. Since every move can at most put M pieces into the right place, n′ can have at
least x − M misplaced pieces

3. Thus, h(n′) ≥ x−M
M = x

M − 1
4. Also, for this puzzle c(n, a, n′) = 1 given that a is a valid move that move n to n′,

as each move of the Rubik cube have uniform cost.
• c(n, a, n′) + h(n′) ≥ 1 + x

M − 1 = x
M = h(n)

• h(n) ≤ c(n, a, n′) + h(n′)
5. Therefore by definition, h(n) is consistent.
6. Since consistent imples admissible and h(g) = 0, so h(n) is admissible.

5



Question 1

Tic-Tac-Toe - Use the minimax to determine the first move of the player.

Eval(n) = P(n) − O(n), where P(n), O(n) are the no. of winning lines

Recap

1. What is the MINIMAX algorithm? Why is it used?
2. What are the ingredients needed to setup a minimax problem?
3. What is the impact of choosing min/max in our computation?
4. [@] When was MINIMAX famously used in AI?

• Actors: Min/Max, Leaf Cost
• IBM Deep Blue versus Garry Kasparov in Chess.

6



Question 1

Tic-Tac-Toe - Use the minimax to determine the first move of the player.

Eval(n) = P(n) − O(n), where P(n), O(n) are the no. of winning lines

Recap

1. What is the MINIMAX algorithm? Why is it used?
2. What are the ingredients needed to setup a minimax problem?
3. What is the impact of choosing min/max in our computation?
4. [@] When was MINIMAX famously used in AI?

• Actors: Min/Max, Leaf Cost
• IBM Deep Blue versus Garry Kasparov in Chess.

6



Question 1a

Figure 1: First move 2-ply deep search space

7



Answer 1a

Figure 2: First move 2-ply deep search space
8



Question 1b

Figure 3: Second move 2-ply deep search space solution
9



Answer 1b

Figure 4: Second move 2-ply deep search space solution

10



Question 2 [G]

Run through the α-β:

a. Right to Left
b. Left to Right

Then determine if the effectiveness of pruning depends on iteration order.

Figure 5: Alpha-Beta Tree

Recap

1. What does α-β do?
2. What kind of efficiency

do you gain?
3. What is deep cutoff?

Save on static evaluation
and move generation.

11



Question 2 [G]

Run through the α-β:

a. Right to Left
b. Left to Right

Then determine if the effectiveness of pruning depends on iteration order.

Figure 5: Alpha-Beta Tree

Recap

1. What does α-β do?
2. What kind of efficiency

do you gain?
3. What is deep cutoff?

Save on static evaluation
and move generation. 11



Answer

Figure 6: Right to left

Figure 7: Left to right
12



Question 3

Nonogram, aka Paint by Numbers, is a puzzle where cells are colored or left blank
according to the numbers at the side of the grid.

Figure 8: Inital Figure 9: Solved

13



Recap

1. What are the ingredients needed for informed search?
2. What are the ingredients needed for local search?
3. What are the objectives for informed/local search?

Un/Informed Search (Path): State space, Initial, Final, Action, Transition

• Uninformed: BFS, UCS, DFS
• Informed: GBFS, A*

Local Search (Goal): Inital state, Transition, Heuristic/Stopping criteria

• Hill Climbing, Sim. Annealing, Beam, Genetic. . .

Adversarial Search: Actors, Actions, Leaf Costs

• Minimax, Alpha-Beta

14



Recap

1. What are the ingredients needed for informed search?
2. What are the ingredients needed for local search?
3. What are the objectives for informed/local search?

Un/Informed Search (Path): State space, Initial, Final, Action, Transition

• Uninformed: BFS, UCS, DFS
• Informed: GBFS, A*

Local Search (Goal): Inital state, Transition, Heuristic/Stopping criteria

• Hill Climbing, Sim. Annealing, Beam, Genetic. . .

Adversarial Search: Actors, Actions, Leaf Costs

• Minimax, Alpha-Beta

14



Question 3a [G]

Having learnt both informed search and local search, you think that local search is more
suitable for this problem. Give 2 possible reasons why informed search might be a bad
idea.

Answer 3a

• We are only interested in the final solution.
• Search space is large O(2n×n) for a n × n grid.
• May not be solvable? In that case we can get a config that minimize violations.

15



Question 3a [G]

Having learnt both informed search and local search, you think that local search is more
suitable for this problem. Give 2 possible reasons why informed search might be a bad
idea.

Answer 3a

• We are only interested in the final solution.
• Search space is large O(2n×n) for a n × n grid.
• May not be solvable? In that case we can get a config that minimize violations.

15



Question 3b / 3c / 3d / 3e [G]

Find a formulation for Local Search.

Answer 3b / 3c / 3d / 3e

n × n boolean matrix, where each element is either true (if the corresponding cell is
colored) or false (if the corresponding cell is not colored).

• Inital state is an n × n boolean matrix with every row having random permutations
of boolean vector satisfying row constraints, while the rest of the entries are set to
false.

• Transition: we can pick a random row and generate the list of neighbours with the
corresponding row permuted satisfying row constraints.

• Heuristic/Stopping criteria: number of instances where the constraints on the
column configurations are violated.

16



Question 3b / 3c / 3d / 3e [G]

Find a formulation for Local Search.

Answer 3b / 3c / 3d / 3e

n × n boolean matrix, where each element is either true (if the corresponding cell is
colored) or false (if the corresponding cell is not colored).

• Inital state is an n × n boolean matrix with every row having random permutations
of boolean vector satisfying row constraints, while the rest of the entries are set to
false.

• Transition: we can pick a random row and generate the list of neighbours with the
corresponding row permuted satisfying row constraints.

• Heuristic/Stopping criteria: number of instances where the constraints on the
column configurations are violated.

16



Question 3f [G]

Local search is susceptible to local minimas. Describe how you can modify your solution
to combat this.

Answer 3f

• Introduce random restarts by repeating local search from a random initial state
• Simulated annealing search to accept a possibly bad state with a probability that

decays over time
• beam search to perform k hill-climbing searches in parallel.

17



Question 3f [G]

Local search is susceptible to local minimas. Describe how you can modify your solution
to combat this.

Answer 3f

• Introduce random restarts by repeating local search from a random initial state
• Simulated annealing search to accept a possibly bad state with a probability that

decays over time
• beam search to perform k hill-climbing searches in parallel.

17



Question 4 [@]

In order for node B to NOT be pruned, what values can node A take on?

Figure 10: Find A so the B is not pruned.
18



< S -inf inf
< a2 -inf inf
> a2 -inf 9
< a2 -inf 9
> a2 -inf 7
< a2 -inf 7

< b2 -inf 7
> b2 5 7
< b2 5 7
> b2 5 7

> a2 -inf 5
> S 5 inf

19



< S 5 inf
< a1 5 inf
> a1 5 9
< a1 5 9

< b1 5 9
> b1 5 9
< b1 5 9
> b1 5 9
< b1 5 9
> b1 Pruned val >= beta: 9 >= 9

> a1 5 9
< a1 5 9
> a1 5 6

> S 6 inf

Pruned when A ≥ 9, Not pruned when A ≤ 8 20



Bonus Qn

To help you further your understanding, not compulsory; Work for Snack/EXP!

Tasks

1. Trace Manually/Use code Figure 11 to see the full capability.
1.1 Some code implemented in https://github.com/eric-vader/CS2109s-2324s2-bonus

2. How can we benefit from α-β’s efficiency?

21

https://github.com/eric-vader/CS2109s-2324s2-bonus


Figure 11: Alpha-Beta Example (Credit MIT)

22



Study More

1. MIT Lecture - https://youtu.be/STjW3eH0Cik?si=YcnrXUJko5jjLzB0
2. IBM Deep Blue -

https://www.sciencedirect.com/science/article/pii/S0004370201001291
3. Game Theory Concepts Within AlphaGo - https://towardsdatascience.com/game-

theory-concepts-within-alphago-2443bbca36e0
4. What Game Theory Reveals About Life, The Universe, and Everything -

https://youtu.be/mScpHTIi-kM?si=CLagrjz3WVi-EkXG

23

https://youtu.be/STjW3eH0Cik?si=YcnrXUJko5jjLzB0
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://towardsdatascience.com/game-theory-concepts-within-alphago-2443bbca36e0
https://towardsdatascience.com/game-theory-concepts-within-alphago-2443bbca36e0
https://youtu.be/mScpHTIi-kM?si=CLagrjz3WVi-EkXG


Buddy Attendance Taking

1. [@] and Bonus declaration is to be done here; You should show bonus to Eric.
2. Attempted tutorial should come with proof (sketches, workings etc. . . )
3. Random checks will be conducted - python ../checks.py T13

Figure 12: Buddy Attendance: https://forms.gle/jsGfFyfo9PTgWxib6 24

https://forms.gle/jsGfFyfo9PTgWxib6

